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LETTER TO THE EDITOR

What does the K-edge x-ray magnetic circular dichroism
spectrum tell us?

G Y Guo
Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK

Received 10 September 1996

Abstract. Two rules which relate the magnetic circular dichroism (MCD) from the s core levels
of a solid to the p-projected spin and orbital magnetization density of unoccupied states of the
solid have been derived. Explicit calculations using the spin- and orbital-polarized relativistic
multiple-scattering theory for bcc Fe, hcp Co and fcc Ni corroborate that the K-edge MCD
spectrum probes the p-projected orbital magnetization density of unoccupied states.

In the past few years, we have witnessed significant developments and phenomenal interest
worldwide in x-ray magnetic circular dichroism (MCD) experiments using intense, tunable,
polarized synchrotron radiation sources [1]. On the theoretical front, the understanding of the
origins of MCD and its connections with the magnetic moments has also been advanced. In
particular, Tholeet al and Carraet al [2] discovered recently that, within an atomic multiplet
theory, the integrated MCD signals for given spin–orbit-split absorption edges are related
to the local spin and orbital magnetic moments. These magnetization sum rules have made
MCD an unique probe of the element specific and shell selective spin and orbital magnetic
moments [3]. Nevertheless, the understanding of the relationship between the shape of
the MCD spectrum and the magnetic aspects of the underlying electronic structure is still
incomplete. For example, a clear interpretation of the K-edge MCD spectrum has yet to
be found [4]. It is well known that, to a large extent, an x-ray absorption spectrum (XAS)
measures the spectrum of an associated angular-momentum-projected charge density of
unoccupied states. A MCD spectrum usually contains rich structures and one might expect
that it provides information about some magnetization density of states (DOS). Angular-
momentum-decomposed charge DOS spectra are important to understand, e.g., the chemical
bonding and structural stability of the solid. Likewise, magnetization DOS spectra are
important to explain the formation of the magnetic moments and other magnetic phenomena
in the solid. Scḧutz et al [1] argued early on that, as a first-order approximation, the K-edge
MCD is proportional to the p-projected spin density of states (SDOS). Indeed, they found
that in the Fe systems the K-edge MCD spectrum is similar to the calculated p-projected
SDOS spectrum. However, this interpretation fails for the Co and Ni systems [5]. More
recently, Igarashi and Hirai [6] speculated that the shape of the MCD spectrum near the K
edge is determined by the 3d-projected orbital magnetization density of states (ODOS).

In this paper, I will describe a derivation of two rules within the itinerant electron theory
which allows us to interpret the relative MCD spectrum from the s core states of a solid
in terms of the normalized p-projected ODOS and SDOS. The spin- and-orbital polarized
relativistic multiple-scattering theoretical calculations of both the K-edge MCD spectrum
and the ODOSs for bcc Fe, hcp Co and fcc Ni have been performed. I will use the results
of these calculations to discuss the validity of these rules.
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Within the itinerant one-electron theory, the absorption rateWλ for an incident x-
ray beam of polarizationλ is given in terms of the retarded one-particle Green function
G+(r, r, E) as [7]

Wλ(h̄ω) = −2

h̄

∑
c

〈8c|5∗
qλ Im G+(h̄ω + Ec)5qλ|8c〉θ(h̄ω + Ec − Ef ) (1)

where 8c and Ec are, respectively, the initial core state wavefunction and energy.Ef

and5λ are the Fermi energy and electron–photon interaction operator, respectively. MCD
is caused by the simultaneous occurrence of spin–orbit coupling and spin polarization in
a magnet [8]. Therefore, we use the spin-polarized relativistic multiple-scattering theory
(SPRMST) [9]. Then,

Im G+(r, r′, E) =
∑
3,3′

Z3(r, E) Im τ3,3′(E)Z+
3(r, E) (2)

whereZ3 (3 = κ, m) are the single-site scattering solutions of the Dirac equation.τ(E)

is the so-called scattering path matrix describing the multiple scatterings in the solid. The
charge, spin and orbital magnetization DOSs are given, respectively, by

N(E) = − 1

π
Im

∫
Tr G+(r, r, E) dr3 (3)

S(E) = − 1

π
Im

∫
Tr βσzG

+(r, r, E) dr3 (4)

O(E) ≈ − 1

π
Im

∫
Tr βL̂zG

+(r, r, E) dr3. (5)

The s core state wavefunctions8
†
c(r) can be written as

[gmc

κc
(r)χmc†

κc
(r̂), −if mc

κc
(r)χ

mc†
−κc

(r̂)].

The scattering solutionsZ+
3(r) are given by∑

κ ′=κ,−κ−1

[gm
κ,κ ′(r)χ

m†
κ ′ (r̂), −if m

κ,κ ′(r)χ
m†
−κ ′(r̂)].

χm
κ (r̂) are the usual spin angular functions.

Since the quadrupole transition is negligible [10, 6], we make the dipole approximation,
i.e., 5qλ = −eα · aλ [10]. To simplify the derivation, one can replace−eα · aλ with
−i(eh̄/mec) 5 · aλ, thereby ignoring negligible spin-flip transitions [11]. Consequently, the
radial matrix elements do not contain the coupled large and small radial wavefunction
integrals (e.g.,(

∫
r2gm

κ,κ(r)f
mc
κc,κc

(r) dr)) [10] and, thus, one can keep only the large-
component terms. We now assume that the coupling betweengm

κ,κ(r) and gm
κ,−κ−1(r)

is small, thus neglecting the off-diagonal componentgm
κ,−κ−1(r). As a result, only the

diagonal scattering path matrix elements Imτ3,3(E) survive in equation (1). This is the
most severe approximation made in the present derivation, especially for the systems where
the spin polarization is large. We further assume thatgm

κ,κ(r) is independent ofm, i.e.,
gm

κ,κ(r) = gκ(r). After some algebra, we obtain the following:

W+(E) − W−(E) = − 4e2h̄

9m2
ec

2

[
2R2

p1/2

1/2∑
m=−1/2

mτI
1,m + R2

p3/2

3/2∑
m=−3/2

mτI
−2,m

]
(6)

W+(E) + W 0(E) + W−(E) = − 6e2h̄

9m2
ec

2

[
R2

p1/2

1/2∑
m=−1/2

τ I
1,m + R2

p3/2

3/2∑
m=−3/2

τ I
−2,m

]
(7)
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Op(E) = − 2

3π

[
2Fp1/2

1/2∑
m=−1/2

mτI
1,m + Fp3/2

3/2∑
m=−3/2

mτI
−2,m

]
(8)

Sp(E) = 2

3π

[
Fp1/2

1/2∑
m=−1/2

mτI
1,m − Fp3/2

3/2∑
m=−3/2

mτI
−2,m

]
= Sp1/2(E) + Sp3/2(E) (9)

Np(E) = − 1

π

[
Fp1/2

1/2∑
m=−1/2

τ I
1,m + Fp3/2

3/2∑
m=−3/2

τ I
−2,m

]
(10)

where τ I
κ,m denotes Im[τκm,κm(E)], Rpj

denotes
∫

r2 dr gpj
(r) dgs(r)/dr and Fpj

,∫
r2 drg2

pj
(r). Note that the x-ray absorption coefficientµλ(h̄ω) is given by

2h̄cWλ(h̄ω)/ω�. Finally, by assumingRp1/2(E) ≈ Rp3/2(E), Fp1/2(E) ≈ Fp3/2(E), and
µ0(E) ≈ (µ+(E) + µ−(E))/2, we arrive at the central results of this work,

µ+(E) − µ−(E)

µ+(E) + µ−(E)
= µc(E)

µ0(E)
= 3Op(E)

2Np(E)
(11)

µ+(E) − µ−(E)

µ+(E) + µ−(E)
= 3[Sp3/2(E) − 2Sp1/2(E)]

2Np(E)
. (12)

Clearly, for each spin–orbit-split component of the p conduction band, one can obtain
equation (11) without assuming the radial integrals for p1/2 and p3/2 to be equal.
Furthermore, equations (8), (9), (11) and (12) show thatOp(E) = Sp3/2(E) − 2Sp1/2(E).
This interesting relation is a special case of the general formula

Ol(E) = lSlj+(E) − (l + 1)Slj−(E) (13)

wherej± = l±1/2. This formula is valid if the approximations mentioned above are valid.
Interestingly, equation (12) (equation (13)) clearly illustrates that the MCD (O(E)) would
be zero either if there were no spin–orbit coupling since in this caseSp3/2(E) = 2Sp1/2(E)

[lSlj+(E) = (l + 1)Slj−(E)] or if there were no spin polarization.
If we assume that the radial matrix elements (Rpj

, Fpj
) and the photon frequency (ω)

near the K-edge are constant and integrate both sides of equations (6)–(8) and (10) from
Ef to a cut-off energyEc where MCD is zero, we obtain a sum rule∫ Ec

Ef
dE[µ+(E) − µ−(E)]∫ Ec

Ef
dE[µ+(E) + µ0(E) + µ−(E)]

= −〈Lz〉p
nh

p

(14)

wherenh
p is the number of p holes and〈Lz〉p is the p-projected ground state orbital magnetic

moment. Thus, we have just rederived from the itinerant electron theory the s core level
orbital magnetization sum rule of Tholeet al [2]. Note that the rules discussed above
are applicable for any x-ray absorption spectra from the s core states such as the K- and
L1-edges.

We now investigate the validity of the orbital magnetization density of states rule
(equation (11)). We will not be concerned further with the spin magnetization density of
states rule (equation (12)) since [Sp3/2(E) − 2Sp1/2(E)] is perhaps not a useful quantity.
I have performed explicit calculations of both the polarized x-ray absorptions and the
charge and magnetization DOSs of bcc Fe, hcp Co and fcc Ni using the SPR-MST [9].
Note that, in these explicit calculations, none of the approximations (except the dipole
approximation) introduced in the derivation of equations (6)–(14) was made. The underlying
electronic structure was calculated self-consistently also using the SPR-MST. The so-
called orbital polarization correction [12] has been included in both the electronic structure
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Figure 1. The relative K-edge magnetic circular dichro-
ism (µc(E)/µ0(E)) calculated from equation (1) (full
curve) and normalized p-projected orbital magnetization
density of states(3Op(E)/2Np(E)) calculated from
equations (3) and (5) (dotted curve): (a) bcc Fe, (b)
hcp Co and (c) fcc Ni. Zero energy is the Fermi level.

Figure 2. The K-edge x-ray absorption spectrum
(µ0(E)) calculated from equation (1) (full curve) and
p-projected density of states(Np(E)) calculated from
equation (3) (dotted curve): (a) bcc Fe, (b) hcp Co and
(c) fcc Ni. Zero energy is the Fermi level.

and x-ray absorption calculations. Further details concerning these calculations are given
elsewhere [13]. The calculated K-edge relative MCD (µc(E)/µ0(E)) and normalized ODOS
(defined as 3Op(E)/2Np(E)) of bcc Fe, hcp Co and fcc Ni are plotted in figure 1. The
spectra in figure 1 have been Lorentzian broadened with a width of 0.5 eV. Clearly, the
normalized ODOS follows closely the relative MCD spectrum especially in hcp Co and fcc
Ni. The experimental uncertainties for the K-edge MCD are often quite moderate perhaps
because of the smallness of the MCD signals. Thus, one may say that the rule (equation (11))
holds quantitatively. As mentioned before, the most severe approximation is the neglecting
of the small partnergm

κ,−κ−1(r) of the coupled scattering solutions of the Dirac equation.
The errors due to this approximation may be expected to increase with the spin polarization.
This is why the discrepancies in Fe are larger than in Co and Ni.

If the radial matrix elements were energy independent, the MCD (µc) would be exactly
proportional to the ODOS and the XAS (µ0) to the charge DOS. To see how much the
radial matrix elements modify the p-projected DOS, I plotted the XAS and p-projected
DOS in figure 2, and the MCD and p-projected ODOS in figure 3. The spectra in figures 2
and 3 have been Lorentzian broadened with a width of 0.5 eV. Figure 3 shows that there



Letter to the Editor L751

Figure 3. The K-edge magnetic circular dichroism(µc(E)) calculated from equation (1)
(full curve) and p-projected orbital magnetization density of states(Op(E)) calculated from
equation (5) (dotted curve): (a) bcc Fe, (b) hcp Co and (c) fcc Ni. Zero energy is the Fermi
level.

is a good agreement between the MCD and the rescaled p-projected ODOS. Therefore, one
may conclude that, at least for Fe, Co and Ni, the K-edge MCD measures the p-projected
ODOS. There is also a good agreement between the rescaled p-projected DOS and the XAS
within an energy range up to 12 eV aboveEf . Beyond that, the energy dependence of
the radial matrix elements appears to be important and some pronounced discrepancies can
be seen (figure 2). These discrepancies do not occur in the MCD spectrum in figure 3
because the MCD signals and the p-projected ODOS are very small in this energy range.
Finally, note that the conclusions concerning the validity of the ODOS rule of equation (11)
made here do not depend on the orbital polarization correction being included in the present
calculations, although including the orbital polarization correction gives rise to a better
agreement between the theory and experiments [13]. A vigorous comparison between the
theoretical and experimental K-edge MCD spectra is given elsewhere [13].

To summarize then, I have shown that the K-edge MCD spectrum probes the p-projected
orbital magnetization density of unoccupied states.
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[5] Scḧutz G and Wienke R 1989Hyperfine Interact.50 457
[6] Igarashi J and Hirai K 1994Phys. Rev.B 50 17 820; 1996Phys. Rev.B 53 6442
[7] Durham P J 1988X-ray Absorptioned D C Koningsberger and R Prins (New York: Wiley)
[8] Argyres P N 1955Phys. Rev.97 334
[9] See, e.g., Strange P, Ebert H, Staunton J B and Gÿorffy B L 1989 J. Phys.: Condens. Matter1 2925
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